
How Apex Automates CPM-GOMS

Michael Freed*º, Michael Matessa*, Roger Remington*, Alonso Vera*

* MS 262-4 NASA Ames Research Center / Moffett Field, CA 94035 / USA
º IHMC / University of West Florida / 40 South Alcaniz St. / Pensacola, FL 32501 / USA

Abstract

Although acknowledged to be a powerful technique for
predicting skilled behavior, CPM-GOMS (John and
Kieras, 1996) is not widely used in interactive system
design. We hypothesize that this is because creating
CPM-GOMS models requires extensive expertise and
is tedious and error-prone. To address these problems,
we used the Apex architecture (Freed, 1998b) to
automate critical parts of the CPM-GOMS analysis
process. This paper describes how modelers represent
CPM-GOMS models in Apex and how Apex translates
those representations into predictions of skilled
behavior. This information should prove helpful in
reproducing CPM-GOMS capabilities in other
cognitive architectures.

Introduction
This paper describes an approach to applied human
performance modeling based on the automatic
scheduling of low-level cognitive, perceptual, and
motor (CPM) resources that underlie actions such as
moving and clicking a mouse, pressing a button, or
speaking a phrase. Specifically, our computational
architecture, Apex, automates a modeling technique
known as CPM-GOMS (Gray, Atwood and John,
1993; John and Kieras, 1996). The practical value of
CPM-GOMS is that it has been shown to provide very
accurate zero-parameter predictions of human
performance in highly practiced tasks. Its capacity for
making accurate predictions for tasks of practical
significance is well illustrated by its use in Project
Ernestine (Gray, Atwood and John, 1993). A CPM-
GOMS model was used to generate predictions of the
average time for a telephone operator to handle a
customer transaction using newly designed equipment
and procedures. Accurately, but contrary to the system
designer’s expectations, the model predicted an
average task duration .63 seconds greater than that
required with existing equipment. With each second
of transaction time costing NYNEX three million
dollars annually, purchasing the new equipment would
have been a costly mistake.

Given successes like project Ernestine, CPM-
GOMS is acknowledged in the human-computer
interaction community as a powerful predictive
technique. However, CPM-GOMS is also considered
an onerous and error-prone process that requires a
great deal of specialized expertise to apply (John,
Vera, Matessa, Freed and Remington, 2002). These
factors have almost certainly inhibited CPM-GOMS
from coming into widespread use.

Elsewhere (John et al., 2002) we have described the
benefits of using the Apex cognitive architecture
(Freed, 1998b) to automatically construct CPM-
GOMS models, and demonstrated the validity of the
resulting human performance predictions. Here we
describe in detail how Apex automates CPM-GOMS.
In keeping with its goal of providing a simplified
modeling framework for engineering domains, Apex
provides a flexible behavior representation language
that permits the Apex modeler to represent behavior at
a relatively high level, thus facilitating model
development. Underlying this high-level language is a
complex action selection architecture that selects and
schedules tasks and resources. A more detailed
treatment of how the Apex architecture interprets the
high-level representation of task knowledge will be
useful in developing human performance models in
Apex. The description also attempts to highlight
abstract properties needed for any automation of
CPM-GOMS, and should facilitate its implementation
in other computational architectures.

GOMS and CPM-GOMS
CPM-GOMS (John and Kieras, 1996) is an extension
of GOMS (Card, Moran and Newell, 1983), a
methodology for predicting how long a person will
take to carry out a well-learned machine-interface
task. GOMS represents tasks in terms of Goals,
Operators, Methods, and Selection rules. For
example, an analysis of the task of deleting a file from
one’s computer directory structure might start with a
top-level goal such as (delete-file oldpic.jpg).
Methods are generalized action sequences for
decomposing goals into subgoals. For example, a
method for goals of type delete-file might consist of
the sequence: visually find target file icon, move
mouse pointer to icon, hold mouse button, move
mouse pointer to trash-icon, release mouse button.
Selection rules are used to choose between alternative
methods for accomplishing a goal – e.g. a rule might
choose between the file removal method above and a
text-based method depending on whether a graphical
or command-line interface is being used. Method-
based goal decomposition continues recursively on
(sub)goals, stopping if the goal corresponds to a
primitive operator. What constitutes an operator is
decided by the modeler based on how fine-grained an
analysis is desired. Usually, GOMS modelers define
operators at the level of interface actions such as
clicking a mouse or reading a value off a display.

The process of recursively applying methods to non-
primitive goals (those that do not correspond to an
operator) produces a goal hierarchy. Ordered by a
depth-first traverse, the leaf nodes of this hierarchy
form a sequence of operator-level actions (o1 .. on)
whose total execution time (Soi) is the predicted total
time for the task. This approach to predicting task
duration makes strong assumptions about operator
independence – that operators are executed in strict
sequence and that the specific nature of an operator
has no effect on the time required to execute other
operators in the sequence. These assumptions do not
hold for highly practiced sequences where the
execution of adjacent operators may overlap in time
and the degree of overlap can depend on operator
order and identity (cf. Agre and Shrager, 1990). As a
result, the sum duration of operators whose assigned
individual durations are correct in isolation will tend
to predict excessive overall task duration.

The CPM-GOMS method extends GOMS to
account for overlapping execution. A CPM-GOMS
analysis is derived from a GOMS analysis of the same
task. However, the interface-level behaviors in the
resulting sequence are no longer considered operators.
Instead they are template-level goals. We denote the
template-level goal sequence (t0 .. tn). Unlike
operators, which cannot be further decomposed, and
unlike regular goals in the goal hierarchy which are
decomposed using methods, a template-level goal is
decomposed using a new structure called a template.

A template specifies decomposition of an interface-
level goal into discrete cognitive, perceptual and
motor (CPM) actions consistent with the Model
Human Processor (e.g. Card, Moran and Newell,
1983); see also Gray and Boehm-Davis, 2000). Each
of these actions is considered an operator and each is
considered a user of a particular cognitive, perceptual
or motor resource. Operators in a template can be
carried out concurrently if they use different resources
and are not order-constrained by the logic of the task.
For instance, two eye-movement operators cannot be
carried out concurrently, nor can an eye-movement
and a hand-movement if the former is used to visually
identify a target for the latter.

In CPM-GOMS, operators from one template-level
goal in the sequence can sometimes begin before all
operators from a preceding template-level goal have
finished. Several kinds of constraints (described
below) govern the interleaving of operators from
different templates. The essence of the interleaving
phenomenon is that activities specified by a template
do not use all resources all of the time; idle time
(slack) in the use of a resource by one template’s
operators represents an opportunity for operators from
a later template to “slip back” and begin execution.
Interleaving at the level of CPM-GOMS operator-
level goals corresponds to overlap in the execution of
higher-level goals – i.e. at the level of classic GOMS

operators – and thus accounts for the different
predictions of the CPM-GOMS and classic GOMS
approaches.

The problem of determining how to interleave
operators from a sequence of template-level goals can
be formulated as a scheduling problem with three
kinds of constraints determining what constitutes a
correct schedule. Logical constraints, where one
action is required to specify or enable another and
therefore must precede it, may apply between
operators within a single template or across templates.
Within a template, logical constraints can be
represented as explicit orderings between operators.
To enforce logical constraints across templates
requires representing each operator’s preconditions
and effects. A logical constraint exists if the effect of
executing an operator from an earlier template is
required to satisfy a precondition for an operator of a
later template. Since CPM-GOMS allows operators
from one template to slip back into the temporal scope
of earlier templates, enforcing cross-template logical
constraints is required to guarantee correct behavior.

Unary resource constraints specify that when two
operators use a non-sharable, non-depletable resource
(e.g. the left-hand), they cannot be carried out
concurrently. Within a template, operators requiring
the same resource must be explicitly sequenced.
Across templates, operators must follow a template
precedence rule – i.e. given template sequence t1 .. tn,
operator A from template-level goal ti that requires
resource R, operator B from tj that also requires R, and
i<j, operator A has precedence. An important nuance
in applying this rule applies in situations where the
earlier template has an interval of slack time
immediately prior to A that is not long enough for B to
run to completion. The template precedence rule
extends to this case; B cannot be scheduled for that
interval.

Slack exclusion constraints are restrictions a
template places on the use of slack time by operators
that are brief enough to fit into a slack interval but
have some “undesirable” property. Templates in the
model described by John et al. (2002) employed a
slack exclusion constraint on cognitive operators
representing the initiation of a motor response. In
particular, the model employed a cognitive initiation
exclusion rule defined as follows: given a set of
operators A1..Am from template-level goal ti that all
use resource R, operators B and C from template-level
goal tj where C uses R and B represents a cognitive
action that initiates action in C, and i<j, B cannot
execute until A1..Am are complete. This rule
contributed to very accurate predictions in the
referenced model; however, its generality and
scientific basis are a topic of ongoing research.

So far, we have provided an architecture-
independent characterization of the CPM-GOMS
framework implemented in Apex. The remainder of

the paper will describe how task knowledge is
represented in Apex and how these representations can
be made to meet the specific requirements of a CPM-
GOMS analysis as described above.

Apex
When performed by hand, the goal decomposition and
operator scheduling process needed to generate a
correct CPM-GOMS analysis is difficult and time-
consuming. Apex provides a conceptual and
computational framework for formalizing and
automating some of the most demanding parts of the
process. Apex is a software tool for simulating the
behavior of intelligent agents, especially human agents
(Freed 1998b). The conceptual approach taken in
Apex is to treat the intelligent agent as resource-
limited, and to provide capabilities needed to model
how the agent allocates its limited resources to
accomplish a set of tasks.

The agent architecture incorporates a plan execution
system (Firby 1988; Pell et al. 1997) that provides
capabilities needed for CPM-GOMS such as
hierarchical task decomposition and enforcement of
logical preconditions. An integrated dispatch
scheduler (Zweben and Fox, 1994) and other
mechanisms (Freed, 1998a, 2000) provide the ability
to allocate resources based on priority determinations
and constraints. This section describes how task
knowledge in Apex invokes and parameterizes these
mechanisms.

 (procedure
 (index (delete-file ?file using mouse))
 (profile right-hand)
 (step s1 (find-and-grasp mouse))
 (step s2 (vis-locate ?file icon => ?icon))
 (step s3 (mouse-move to ?icon) (waitfor ?s1 ?s2))
 (step s4 (mouse-drag ?icon to trash) (waitfor ?s3))
 (step ctl1 (terminate ?self) (waitfor ?s4))
 (step ctl2 (reset) (waitfor (interrupted ?self))))

Figure 1: A procedure.

The central construct in Apex’s task knowledge
notation, the procedure, is used to represent different
kinds of “how-to” including CPM-GOMS methods,
templates and operators. Every procedure includes at
least an index clause and one or more step clauses.
The index identifies the procedure and specifies the
class of goals for which it is appropriate. Each step
clause describes a subgoal or auxiliary activity.

Steps are concurrently executable unless otherwise
specified. A waitfor clause is used to indicate
preconditions. Goals created with waitfor
preconditions become eligible for execution (enabled)
only when all the events specified in the waitfor clause
have occurred. Thus, goals created by the steps
labeled s1 and s2 in Figure 1 begin enabled and may
be carried out concurrently. The remaining steps
specify pending goals – i.e. goals that are created with

unsatisfied preconditions and therefore cannot execute
right away.

Events arise primarily from two sources. First,
perceptual processes produce a stream of events to
represent new or updated observations of the external
world. Second, the agent architecture generates events
to reflect the status of goals it is executing or
considering for execution. Two such events are
particularly important for CPM-GOMS modeling.
First, the architecture generates events of the form
term (terminated <goal>) whenever a goal completes.
Steps with waitfor clauses such as (waitfor ?s4), an
abbreviation of (waitfor (terminated ?s4)), specify that
the termination (completion) of one goal is a
precondition for starting another. This constitutes an
ordering constraint. In Apex CPM-GOMS models,
task logic constraints are represented as explicit
ordering constraints.

Another important kind of event signals that the
execution of a goal has been interrupted in order to
carry out a conflicting goal with higher priority.
When an interruption occurs, the architecture
generates an event of the form (interrupted <goal>).
This can trigger contingency handling behaviors
represented by steps that wait for specified goals to
become interrupted. For example, the step labeled
ctl2 in Figure 1 specifies restarting the from the
beginning of the procedure if the delete-file goal is
interrupted, rather than trying to pick up at the point
where the task was interrupted (Apex’s default
behavior). Interruption-handling behaviors are
specified in Apex representations of CPM-GOMS
operators.

Apex automatically allocates non-sharable resources
among competing goals. A goal’s resource
requirements are determined when all of its non-
resource (waitfor) preconditions have been satisfied
and a procedure for carrying out the goal has been
selected. The procedure’s profile clause specifies
what resources the goal needs before it becomes
eligible for execution. Resource preconditions are
satisfied when the architecture determines that the
goal is either the sole competitor or highest priority
competitor for all of the resources it needs. A profile
clause specifies resources a goal needs from the
moment it begins execution until the time it is
complete. The step action hold-resource can be used
to assert a resource requirement that arises during
execution. For instance, if (step spcl (hold-resource
cognition) (waitfor ?s3)) were added to the above
procedure, this would cause the executing goal
(delete-file oldpic.jpg) to require the “cognition”
resource in addition to the “right-hand” resource (the
latter requirement having been established by the
profile clause). Adding a new resource requirement
during execution triggers a new resource competition,
possibly resulting in the goal failing to get the
resources it needs and thereby interrupted. The step

action release-resource is used to remove an existing
requirement prior to goal completion.

Apex can resolve goal competitions based on a
number of factors including, e.g., proximity of goal-
relevant deadlines, expected cost of interruption and,
for repeated tasks, time since last iteration (see Freed,
1998a). However, for CPM-GOMS analyses, the
most important factor is precedence which is specified
(optionally) using a rank clause. Goal A has
precedence over goal B, and thus has priority over B
in competition for a resource if there exists goals A’
and B’ where A’ is an ancestor of A, B’ is an ancestor
of B, A’ and B’ are siblings, both A and B have been
explicitly assigned ranks (within the lexical scope of
the procedure from which they originated) and
rank(A) < rank(B).

Specifying CPM-GOMS models in Apex
A CPM-GOMS analysis can be thought of as taking
place in 3 phases. First, a modeler represents the task
of interest in terms of methods, selection rules and a
high-level goal. Task-independent templates and
operators may also have to be represented, though in
many cases, this step will not be necessary. Instead,
required templates and operators may be available in a
library of reusable behavior representations defined
during previous modeling efforts (Matessa et al.,
2002)1. In the second phase, methods and selection
rules are used to generate a goal hierarchy, with the
leaf-level elements forming a sequence of template-
level goals. Third, templates are used to decompose
each goal in the sequence into a set of operators and
operator scheduling constraints. The output of the
analysis is a schedule that includes operators from all
goals in the sequence, meets all constraints and is
otherwise optimal (minimum duration). The schedule
can be represented in the form of PERT chart, which
graphically represents resource usage over time.

Apex automates the second and third phases and
automatically generates a PERT chart, allowing the
modeler to focus solely on representing task-relevant
behaviors. This section describes how an Apex
modeler represents methods, templates and operators.
Examples of these structures, illustrated in Figure 2,
are adapted from the Apex CPM-GOMS model of an
experimental task (John et al., 2002) in which human
subjects used a mouse to operate a simulated
automatic teller machine. Templates developed for an
entirely different task (Gray and Boehm-Davis, 2000)
were reused in this model.

Representing Methods
In GOMS and CPM-GOMS, a method is a sequence
of steps representing one way to achieve a specified

1 This is one part of a broader effort to reduce the time and
expertise needed to create Apex models while increasing the
size and complexity of models that can realistically be
attempted (Freed and Remington, 2000).

type of goal. However, step-ordering in a GOMS
method means something quite different from step-
ordering in a CPM-GOMS method. In the former
case, if step B follows step A, then all subgoals and
operators descending from step A must be completed
before B or any of its descendants can begin. This
kind of ordering can be accomplished by making the
completion of step A an enabling precondition for step
B using the waitfor construct (see example Figure 1).
For CPM-GOMS, this approach is too restrictive.
Operators descending hierarchically from one step
must be free to execute before those from a prior step
have completed, subject to the constraints described
earlier. The necessary effect is achieved using the
rank clause. Whereas waitfor is a control construct in
the programming language sense (like a loop or
conditional-branch) and specifies order of execution,
rank is a declaration (advisory construct) that
attributes a property – rank value – to a given goal. If
rank is specified for the steps of every method, then
any two primitive operators arising from different
templates can be compared to see which has the
superior rank value and, thus, which has precedence in
case of a resource conflict.
 (procedure
 (index (perform withdraw transaction ?amt))
 (step s1 (fast-move-click withdraw-button) (rank 1))
 (step s2 (fast-move-click checking-button) (rank 2))
 (step s3 (enter-number-sequence ?amt) (rank 3))
 (step s4 (slow-move-click money-slot) (rank 4))
 (step ctl1 (terminate) (waitfor ?s1 ?s2 ?s3 ?s4)))

 (a)
 (procedure
 (index (fast-move-click ?target))
 (step c1 (initiate-move-cursor ?target))
 (step hvr1 (hold-resource r-hand-block) (waitfor ?c1))
 (step m1 (move-cursor ?target) (waitfor ?c1))
 (step c2 (attend-target ?target))
 (step hvr2 (hold-resource vision-block) (waitfor ?c2))
 (step c3 (initiate-eye-movement ?target) (waitfor ?c2))
 (step m2 (move-eye ?target) (waitfor ?c3))
 (step p1 (perceive-complex-obj ?target) (waitfor ?m2))
 (step rvr2 (release-resource vision-block) (waitfor ?p1))
 (step c4 (verify-target-pos ?target) (waitfor ?c3 ?p1))
 (step c5 (initiate-click ?target) (waitfor ?c4 ?m1))
 (step m3 (mouse-down ?target) (waitfor ?m1 ?c5))
 (step m4 (mouse-up ?target) (waitfor ?m3))
 (step rvr1 (release-resource r-hand-block) (waitfor ?m4))
 (step ctl1 (terminate) (waitfor ?m4 ?rvr1 ?rvr2)))

 (b)
 (procedure
 (index (mouse-up))
 (profile right-hand)
 (step s1 (start-activity right-hand release-mouse-button
 :object mouse-device :duration 100 => ?a)
 (step ctl1 (terminate) (waitfor (completed ?a)))
 (step ctl2 (reset ?self) (waitfor (resumed ?self))))

 (c)

Figure 2: (a) method (b) template and (c) operator

Apex can use precedence information to infer control
(operator sequencing) decisions that comply with the
unary resource and slack exclusion constraints. For
example, the method represented in Figure 2a
generates goals for moving the mouse to and clicking
on the “withdraw” and “checking” buttons. These
goals will be decomposed using the template in 2b,
creating numerous operator-level goals including
(initiate-move-cursor withdraw-button) and (initiate-
move-cursor checking button).

As these both require use of the “cognition”
resource, a unary resource constraint applies – the
goals cannot be executed at the same time. Neither
the method or template representation explicitly orders
these steps. Instead, Apex automatically detects the
conflict and determines that a precedence relationship
exists between the goals, with (initiate-move-cursor
withdraw-button) having precedence. On this basis,
the architecture executes this goal first and thereby
satisfies the constraint.

Representing Templates
A CPM-GOMS template specifies a set of operators,
each representing a discrete cognitive, perceptual or
motor activity, and a set of constraints on the
execution of operators. Constructing templates
involves consideration of the logical requirements of
the task (e.g. moving a mouse to a target location must
involve steps for finding the target), general principles
of human cognitive behavior (e.g. reading a word
requires visual attention (McCann, Folk, & Johnston,
1992)), and, in some cases, template-specific
parameters (e.g. Fitt’s Law constants for mouse
movement). Template construction is also guided by
theory which places additional constraints. For
example, CPM-GOMS incorporates the Model Human
Processor constraint that motor actions are preceded
by cognitive initiate operator to prepare the action
(John 1996).

Figure 2b illustrates how templates are represented
in Apex. Every cognitive, perceptual and motor
activity (operator-level action) is represented in a step
clause. Logical constraints are represented using the
waitfor clause. For example, the cognitive action to
initiate motor behavior represented in step c1 is
considered a prerequisite for performing the motor
behavior (m1). Thus, the latter step is explicitly
constrained to wait for the former to complete. Unary
resource constraints between operators within a
template – i.e. where two operators from the template
use the same resource – are also represented using the
waitfor clause. Note that the rank-based mechanism
described previously cannot enforce resource
constraints since all operators from a template will
have equal precedence.

Slack exclusion constraints are meant to prevent
operators with certain “excluded” properties from
executing during otherwise available slack intervals.
The cognitive initiation exclusion rule described

earlier requires that templates represent constraints
that prevent an operator from executing if (a) the
operator originates from a different template with
lower precedence, (b) the operator represents a
cognitive action to initiate behavior in some resource
R, and (c) there is at least one operator in the template
that uses R and is not yet complete (including any that
have not yet begun).

Representations in the template must test whether
these conditions hold. For property (a), it is only
necessary that an excludable operator produces a
resource conflict. Apex will then automatically defer
its execution and thereby enforce the exclusion
constraint. However, this will work only if operator-
level goals that use the contested resource, and thus
produce a conflict, also have property (b). This
requires extending the concept of a resource to signify
any arbitrary property of an operator. In our model,
cognitive operators that initiate action in resource R
are represented by procedures defined to use a
resource named <R>-block (e.g. “r-hand-block”,
“vision-block”) 2. Property (c) concerns when the
template will prescribe use of the <R>-block resource,
making a conflict possible. In particular, the temporal
scope of potential conflicts is an interval running from
the first cognitive initiation act for resource R in the
template to the last operator in the template that uses
R. Because this interval is less than the lifetime of the
template-level goal, it cannot be specified by a profile
clause in the template. Instead, the hold-resource and
release-resource commands are used (see 2b) to
precisely bound the interval.

Representing Operators
Operators are the most primitive, fine-grained level of
behavior in a task representation. To represent a
CPM-GOMS operator in Apex, three issues must be
considered: resource requirements, duration and
interruption handling. Every operator in a CPM-
GOMS model represents a discrete cognitive,
perceptual or motor activity. Each is thus a user of a
single cognitive, perceptual or motor resource notated
in a profile clause in the operator’s definition. In
some cases, an operator will have a property making it
eligible for exclusion under an exclusion constraint. If
so, an additional resource (e.g. vision-block) will be
listed in the operator’s profile clause to represent the
property that makes it excludable.

An operator’s duration contributes to the predicted
total time required for a high-level goal and also
determines whether the operator can fit into a given
interval of slack time. In Apex, duration is

2 What “block” resources correspond to in psychological
terms is still undetermined. One possibility is that each
represents limited cognitive capacity to manage behavior in
some other resource. Another possibility is that each such
resource represents a learned inhibition against interleaving
similar behaviors from different goals.

represented as a parameter of a start-activity step in
the operator representation (see Figure 2c). Executing
this step is what causes the operator to occupy a
specified resource for a block of (simulated) time.
When the prescribed interval has passed, an event of
the form (complete <activity>) is generated to indicate
that the operator is complete.

As described earlier, the unary resource constraint
requires that operators not be executed in a given
interval of slack time if the size of that interval is less
than the operator’s duration. Apex meets this
constraint, not by preventing the operator from
executing in that interval, but by aborting its execution
when the window of slack time closes. Specifically,
an operator will begin execution as soon as its waitfor
preconditions (if any) are satisfied and it becomes the
highest priority competitor for the resource(s) it needs.
If an operator with conflicting resource requirements
and higher priority (i.e. from a template-level goal
with higher precedence) becomes enabled while it is
executing, Apex interrupts the executing operator and
reallocates resources to the new one3. By default,
Apex resumes an interrupted goal where it left off
once the goal again becomes the highest priority
competitor. However, the correct behavior in this case
is not to resume but to reset (start over). To override
the default, a reset step (see Figure 2c) is included in
the representation of each operator.

Discussion
We have provided a detailed description of the
requirements for automating CPM-GOMS and shown
how Apex implements these requirements. The use
of Apex to automate CPM-GOMS analyses allows
user-interface designers and engineers to simulate
human performance on HCI tasks with little effort and
minimal expertise in cognitive modeling or
psychology. For example, in a recent class at
Carnegie Mellon University, all students, none of
whom were psychology students, were able to go from
simple keystroke-level models they had built in Apex
to correct CPM-GOMS models in less than half an
hour. In previous classes and CHI tutorials, the
process took six times as long and often resulted in
incorrect models. These experiences raise hopes that
Apex will allow UI designers and engineers to easily
evaluate human performance on any given interface
using a powerful modeling method previously
inaccessible to all but expert cognitive modelers.

3 Enforcing unary resource constraints by interrupting and
restarting operators is inefficient for “ballistic” tasks where
all operators needed for the high-level goal can be specified
at the outset. It is appropriate for “reactive” tasks where
new goals and operators may arise in response to unknown
or unexpected features of the environment.

References
Agre, P. and Shrager, J. (1990) Routine evolution as the

microgenetic basis of skill acquisition. Proceedings of the
12th Annual Conference of the Cognitive Science Society.

Card, S. K., Moran, T.P. & Newell, A. (1983). The
Psychology of Human-Computer Interaction. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Firby, R.J. (1989) Adaptive Execution in Complex Dynamic
worlds. Ph.D. thesis, Yale University.

Freed, M. (1998a) Managing multiple tasks in complex,
dynamic environments. In Proceedings of the 1998
National Conference on Artificial Intelligence. Madison,
Wisconsin.

Freed, M. (1998b) Simulating human performance in
complex, dynamic environments. Ph.D. thesis,
Northwestern University.

Freed, M. (2000) Reactive Prioritization. Proceedings 2nd
NASA International Workshop on Planning and
Scheduling for Space. San Francisco, CA.

Freed, M. and Remington, R. (2000) Making Human-
Machine System Simulation a Practical Engineering Tool:
An APEX Overview. In Proceedings of the 2000
International Conference on Cognitive Modeling.
Groningen, Holland.

Gray, W. D., & Boehm-Davis, D. A. (2000). Milliseconds
matter: An introduction to microstrategies and to their use
in describing and predicting interactive behavior. Journal
of Experimental Psychology: Applied, 6(4), 322-335.

Gray, W. D., John, B. E. & Atwood, M. E. (1993) Project
Ernestine: Validating a GOMS Analysis for Predicting
and Explaining Real-World Task Performance, Human-
Computer Interaction, v.8 (3), pp.237-309.

John, B. E. (1996) TYPIST: A Theory of Performance In
Skilled Typing. Human-Computer Interaction, 11 (4),
pp.321-355.

John, B. E. & Gray, W. D. GOMS Analyses for Parallel
Activities. Tutorial materials, presented at CHI, 1992
(Monterey, California, May 3- May 7, 1992), CHI, 1994
(Boston MA, April 24-28, 1994) and CHI, 1995 (Denver
CO, May 7-11, 1995) ACM, New York.

John, B. E. & Kieras, D. E. (1996). The GOMS family of
user interface analysis techniques: Comparison and
Contrast, ACM Transactions on Computer-Human
Interaction, v.3(4), pp. 320-351. New York: ACM Press.

John, B., Vera, A., Matessa, M., Freed, M. and Remington,
R. (2002) Automating CPM-GOMS. In CHI 2002
Conference Proceedings.

Matessa, M., Vera, A., John, B., Remington, R. and Freed,
M. (2002) Reusable templates in human performance
modeling. In Proceedings of the 24th Annual Meeting of
the Cognitive Science Society.

McCann, R. S., Folk, C. L., & Johnston, J. C. (1992). The
role of attention in visual word processing. Journal of
Experimental Psychology: Human Perception and
Performance, 18, 1015-1029.

Pell, B. Gat, E., Keesing, R., Muscettola, N. and Smith, B.
(1997) Robust Periodic Planning and Execution for
Autonomous Spacecraft. In Proceedings of the Fifteenth
Joint Conference on Artificial Intelligence, Nagoya,
Japan.

Zweben, M. and Fox, M. (1994) Intelligent Scheduling,
Morgan Kaufman.

