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Abstract 

Although acknowledged to be a powerful technique for 
predicting skilled behavior, CPM-GOMS (John and 
Kieras, 1996) is not widely used in interactive system 
design. We hypothesize that this is because creating 
CPM-GOMS models requires extensive expertise and 
is tedious and error-prone. To address these problems, 
we used the Apex architecture (Freed, 1998b) to 
automate critical parts of the CPM-GOMS analysis 
process.  This paper describes how modelers represent 
CPM-GOMS models in Apex and how Apex translates 
those representations into predictions of skilled 
behavior.  This information should prove helpful in 
reproducing CPM-GOMS capabilities in other 
cognitive architectures. 

Introduction 
This paper describes an approach to applied human 
performance modeling based on the automatic 
scheduling of low-level cognitive, perceptual, and 
motor (CPM) resources that underlie actions such as 
moving and clicking a mouse, pressing a button, or 
speaking a phrase. Specifically, our computational 
architecture, Apex, automates a modeling technique 
known as CPM-GOMS (Gray, Atwood and John, 
1993; John and Kieras, 1996). The practical value of 
CPM-GOMS is that it has been shown to provide very 
accurate zero-parameter predictions of human 
performance in highly practiced tasks. Its capacity for 
making accurate predictions for tasks of practical 
significance is well illustrated by its use in Project 
Ernestine (Gray, Atwood and John, 1993). A CPM-
GOMS model was used to generate predictions of the 
average time for a telephone operator to handle a 
customer transaction using newly designed equipment 
and procedures. Accurately, but contrary to the system 
designer’s expectations, the model predicted an 
average task duration .63 seconds greater than that 
required with existing equipment.   With each second 
of transaction time costing NYNEX three million 
dollars annually, purchasing the new equipment would 
have been a costly mistake.   

Given successes like project Ernestine, CPM-
GOMS is acknowledged in the human-computer 
interaction community as a powerful predictive 
technique.  However, CPM-GOMS is also considered 
an onerous and error-prone process that requires a 
great deal of specialized expertise to apply (John, 
Vera, Matessa, Freed and Remington, 2002).  These 
factors have almost certainly inhibited CPM-GOMS 
from coming into widespread use. 

Elsewhere (John et al., 2002) we have described the 
benefits of using the Apex cognitive architecture 
(Freed, 1998b) to automatically construct CPM-
GOMS models, and demonstrated the validity of the 
resulting human performance predictions.   Here we 
describe in detail how Apex automates CPM-GOMS.  
In keeping with its goal of providing a simplified 
modeling framework for engineering domains, Apex 
provides a flexible behavior representation language 
that permits the Apex modeler to represent behavior at 
a relatively high level, thus facilitating model 
development. Underlying this high-level language is a 
complex action selection architecture that selects and 
schedules tasks and resources. A more detailed 
treatment of how the Apex architecture interprets the 
high-level representation of task knowledge will be 
useful in developing human performance models in 
Apex.  The description also attempts to highlight 
abstract properties needed for any automation of 
CPM-GOMS, and should facilitate its implementation 
in other computational architectures. 

GOMS and CPM-GOMS 
CPM-GOMS (John and Kieras, 1996) is an extension 
of GOMS (Card, Moran and Newell, 1983), a 
methodology for predicting how long a person will 
take to carry out a well-learned machine-interface 
task.  GOMS represents tasks in terms of Goals, 
Operators, Methods, and Selection rules.   For 
example, an analysis of the task of deleting a file from 
one’s computer directory structure might start with a 
top-level goal such as (delete-file oldpic.jpg).  
Methods are generalized action sequences for 
decomposing goals into subgoals.  For example, a 
method for goals of type delete-file might consist of 
the sequence: visually find target file icon, move 
mouse pointer to icon, hold mouse button, move 
mouse pointer to trash-icon, release mouse button.  
Selection rules are used to choose between alternative 
methods for accomplishing a goal – e.g. a rule might 
choose between the file removal method above and a 
text-based method depending on whether a graphical 
or command-line interface is being used.  Method-
based goal decomposition continues recursively on 
(sub)goals, stopping if the goal corresponds to a 
primitive operator.  What constitutes an operator is 
decided by the modeler based on how fine-grained an 
analysis is desired.  Usually, GOMS modelers define 
operators at the level of interface actions such as 
clicking a mouse or reading a value off a display.   



The process of recursively applying methods to non-
primitive goals (those that do not correspond to an 
operator) produces a goal hierarchy.  Ordered by a 
depth-first traverse, the leaf nodes of this hierarchy 
form a sequence of operator-level actions (o1 .. on) 
whose total execution time (Soi) is the predicted total 
time for the task.  This approach to predicting task 
duration makes strong assumptions about operator 
independence – that operators are executed in strict 
sequence and that the specific nature of an operator 
has no effect on the time required to execute other 
operators in the sequence.  These assumptions do not 
hold for highly practiced sequences where the 
execution of adjacent operators may overlap in time 
and the degree of overlap can depend on operator 
order and identity (cf. Agre and Shrager, 1990).  As a 
result, the sum duration of operators whose assigned 
individual durations are correct in isolation will tend 
to predict excessive overall task duration.   

The CPM-GOMS method extends GOMS to 
account for overlapping execution.  A CPM-GOMS 
analysis is derived from a GOMS analysis of the same 
task.  However, the interface-level behaviors in the 
resulting sequence are no longer considered operators.  
Instead they are template-level goals.  We denote the 
template-level goal sequence (t0 .. tn).   Unlike 
operators, which cannot be further decomposed, and 
unlike regular goals in the goal hierarchy which are 
decomposed using methods, a template-level goal is 
decomposed using a new structure called a template.   

A template specifies decomposition of an interface-
level goal into discrete cognitive, perceptual and 
motor (CPM) actions consistent with the Model 
Human Processor (e.g. Card, Moran and Newell, 
1983); see also Gray and Boehm-Davis, 2000). Each 
of these actions is considered an operator and each is 
considered a user of a particular cognitive, perceptual 
or motor resource.  Operators in a template can be 
carried out concurrently if they use different resources 
and are not order-constrained by the logic of the task.  
For instance, two eye-movement operators cannot be 
carried out concurrently, nor can an eye-movement 
and a hand-movement if the former is used to visually 
identify a target for the latter. 

In CPM-GOMS, operators from one template-level 
goal in the sequence can sometimes begin before all 
operators from a preceding template-level goal have 
finished.  Several kinds of constraints (described 
below) govern the interleaving of operators from 
different templates.  The essence of the interleaving 
phenomenon is that activities specified by a  template 
do not use all resources all of the time; idle time 
(slack) in the use of a resource by one template’s 
operators represents an opportunity for operators from 
a later template to “slip back” and begin execution.  
Interleaving at the level of CPM-GOMS operator-
level goals corresponds to overlap in the execution of 
higher-level goals – i.e.  at the level of classic GOMS 

operators – and thus accounts for the different 
predictions of the CPM-GOMS and classic GOMS 
approaches. 

The problem of determining how to interleave 
operators from a sequence of template-level goals can 
be formulated as a scheduling problem with three 
kinds of constraints determining what constitutes a 
correct schedule.   Logical constraints, where one 
action is required to specify or enable another and 
therefore must precede it, may apply between 
operators within a single template or across templates.  
Within a template, logical constraints can be 
represented as explicit orderings between operators.  
To enforce logical constraints across templates 
requires representing each operator’s preconditions 
and effects.  A logical constraint exists if the effect of 
executing an operator from an earlier template is 
required to satisfy a precondition for an operator of a 
later template.  Since CPM-GOMS allows operators 
from one template to slip back into the temporal scope 
of earlier templates, enforcing cross-template logical 
constraints is required to guarantee correct behavior. 

Unary resource constraints specify that when two 
operators use a non-sharable, non-depletable resource 
(e.g. the left-hand), they cannot be carried out 
concurrently.  Within a template, operators requiring 
the same resource must be explicitly sequenced.  
Across templates, operators must follow a template 
precedence rule – i.e. given template sequence t1 .. tn, 
operator A from template-level goal ti that requires 
resource R, operator B from tj that also requires R, and 
i<j, operator A has precedence.  An important nuance 
in applying this rule applies in situations where the 
earlier template has an interval of slack time 
immediately prior to A that is not long enough for B to 
run to completion.  The template precedence rule 
extends to this case; B cannot be scheduled for that 
interval. 

Slack exclusion constraints are restrictions a 
template places on the use of slack time by operators 
that are brief enough to fit into a slack interval but 
have some “undesirable” property.  Templates in the 
model described by John et al. (2002) employed a 
slack exclusion constraint on cognitive operators 
representing the initiation of a motor response.  In 
particular, the model employed a cognitive initiation 
exclusion rule defined as follows: given a set of 
operators A1..Am from template-level goal ti that all 
use resource R, operators B and C from template-level 
goal tj where C uses R and B represents a cognitive 
action that initiates action in C, and i<j, B cannot 
execute until A1..Am are complete.  This rule 
contributed to very accurate predictions in the 
referenced model; however, its generality and 
scientific basis are a topic of ongoing research. 

So far, we have provided an architecture-
independent characterization of the CPM-GOMS 
framework implemented in Apex.  The remainder of 



the paper will describe how task knowledge is 
represented in Apex and how these representations can 
be made to meet the specific requirements of a CPM-
GOMS analysis as described above. 

Apex 
When performed by hand, the goal decomposition and 
operator scheduling process needed to generate a 
correct CPM-GOMS analysis is difficult and time-
consuming.  Apex provides a conceptual and 
computational framework for formalizing and 
automating some of the most demanding parts of the 
process.  Apex is a software tool for simulating the 
behavior of intelligent agents, especially human agents 
(Freed 1998b).  The conceptual approach taken in 
Apex is to treat the intelligent agent as resource-
limited, and to provide capabilities needed to model 
how the agent allocates its limited resources to 
accomplish a set of tasks.  

The agent architecture incorporates a plan execution 
system (Firby 1988; Pell et al. 1997) that provides 
capabilities needed for CPM-GOMS such as 
hierarchical task decomposition and enforcement of  
logical preconditions.  An integrated dispatch 
scheduler (Zweben and Fox, 1994) and other 
mechanisms (Freed, 1998a, 2000) provide the ability 
to allocate resources based on priority determinations 
and constraints.   This section describes how task 
knowledge in Apex invokes and parameterizes these 
mechanisms. 

     (procedure 
       (index (delete-file ?file using mouse)) 
       (profile right-hand) 
       (step s1 (find-and-grasp mouse)) 
       (step s2 (vis-locate ?file icon => ?icon)) 
       (step s3 (mouse-move to ?icon) (waitfor ?s1 ?s2)) 
       (step s4 (mouse-drag ?icon to trash) (waitfor ?s3)) 
       (step ctl1 (terminate ?self) (waitfor ?s4)) 
       (step ctl2 (reset) (waitfor (interrupted ?self)))) 

Figure 1: A procedure. 

The central construct in Apex’s task knowledge 
notation, the procedure, is used to represent different 
kinds of “how-to” including CPM-GOMS methods, 
templates and operators.  Every procedure includes at 
least an index clause and one or more step clauses.  
The index identifies the procedure and specifies the 
class of goals for which it is appropriate.  Each step 
clause describes a subgoal or auxiliary activity.   

Steps are concurrently executable unless otherwise 
specified.  A waitfor clause is used to indicate 
preconditions.  Goals created with waitfor 
preconditions become eligible for execution (enabled) 
only when all the events specified in the waitfor clause 
have occurred.  Thus, goals created by the steps 
labeled  s1 and s2 in Figure 1 begin enabled and may 
be carried out concurrently.  The remaining steps 
specify pending goals – i.e. goals that are created with 

unsatisfied preconditions and therefore cannot execute 
right away. 

Events arise primarily from two sources.  First, 
perceptual processes produce a stream of events to 
represent new or updated observations of the external 
world.  Second, the agent architecture generates events 
to reflect the status of goals it is executing or 
considering for execution.  Two such events are 
particularly important for CPM-GOMS modeling.  
First, the architecture generates events of the form 
term (terminated <goal>) whenever a goal completes.  
Steps with waitfor clauses such as (waitfor ?s4),  an 
abbreviation of (waitfor (terminated ?s4)), specify that 
the termination (completion) of one goal is a 
precondition for starting another.  This constitutes an 
ordering constraint.  In Apex CPM-GOMS models, 
task logic constraints are represented as explicit 
ordering constraints.   

Another important kind of event signals that  the 
execution of a goal has been interrupted in order to 
carry out a conflicting goal with higher priority.  
When an interruption occurs, the architecture 
generates an event of the form (interrupted <goal>).  
This can trigger contingency handling behaviors 
represented by steps that wait for specified goals to 
become interrupted.  For example, the step labeled 
ctl2 in Figure 1 specifies restarting the from the 
beginning of the procedure if the delete-file goal is 
interrupted, rather than trying to pick up at the point 
where the task was interrupted (Apex’s default 
behavior).  Interruption-handling behaviors are 
specified in Apex representations of  CPM-GOMS 
operators.  

Apex automatically allocates non-sharable resources 
among competing goals.  A goal’s resource 
requirements are determined when all of its non-
resource (waitfor) preconditions have been satisfied 
and a procedure for carrying out the goal has been 
selected.  The procedure’s profile clause specifies 
what resources the goal needs before it becomes 
eligible for execution.   Resource preconditions are 
satisfied when the architecture determines that the 
goal is either the sole competitor or highest priority 
competitor for all of the resources it needs.  A profile 
clause specifies resources a goal needs from the 
moment it begins execution until the time it is 
complete.  The step action hold-resource can be used 
to assert a resource requirement that arises during 
execution.  For instance, if (step spcl (hold-resource 
cognition) (waitfor ?s3)) were added to the above 
procedure, this would cause the executing goal 
(delete-file oldpic.jpg) to require the “cognition” 
resource in addition to the “right-hand” resource (the 
latter requirement having been established by the 
profile clause).  Adding a new resource requirement 
during execution triggers a new resource competition, 
possibly resulting in the goal failing to get the 
resources it needs and thereby interrupted.  The step 



action release-resource is used to remove an existing 
requirement prior to goal completion. 

Apex can resolve goal competitions based on a 
number of factors including, e.g., proximity of goal-
relevant deadlines, expected cost of interruption and, 
for repeated tasks, time since last iteration (see Freed, 
1998a).  However, for CPM-GOMS analyses, the 
most important factor is precedence which is specified 
(optionally) using a rank clause.  Goal A has 
precedence over goal B, and thus has priority over B 
in competition for a resource if there exists goals A’ 
and B’ where A’ is an ancestor of A, B’ is an ancestor 
of B, A’ and B’ are siblings, both A and B have been 
explicitly assigned ranks (within the lexical scope of 
the procedure from which they originated) and 
rank(A) < rank(B). 

Specifying CPM-GOMS models in Apex 
A CPM-GOMS analysis can be thought of as taking 
place in 3 phases.  First, a modeler represents the task 
of interest in terms of methods, selection rules and a 
high-level goal.  Task-independent templates and 
operators may also have to be represented, though in 
many cases, this step will not be necessary.  Instead, 
required templates and operators may be available in a 
library of reusable behavior representations defined 
during previous modeling efforts (Matessa et al., 
2002)1.  In the second phase, methods and selection 
rules are used to generate a goal hierarchy, with the 
leaf-level elements forming a sequence of template-
level goals.  Third, templates are used to decompose 
each goal in the sequence into a set of operators and 
operator scheduling constraints.  The output of the 
analysis is a schedule that includes operators from all 
goals in the sequence, meets all constraints and is 
otherwise optimal (minimum duration).  The schedule 
can be represented in the form of PERT chart, which 
graphically represents resource usage over time. 

Apex automates the second and third phases and 
automatically generates a PERT chart, allowing the 
modeler to focus solely on representing task-relevant 
behaviors.  This section describes how an Apex 
modeler represents methods, templates and operators.  
Examples of these structures, illustrated in Figure 2, 
are adapted from the Apex CPM-GOMS model of an 
experimental task (John et al., 2002) in which human 
subjects used a mouse to operate a simulated 
automatic teller machine.  Templates developed for an 
entirely different task (Gray and Boehm-Davis, 2000) 
were reused in this model. 

Representing Methods 
In GOMS and CPM-GOMS, a method is a sequence 
of steps representing one way to achieve a specified 

                                                 
1 This is one part of a broader effort to reduce the time and 
expertise needed to create Apex models while increasing the 
size and complexity of models that can realistically be 
attempted (Freed and Remington, 2000). 

type of goal.  However, step-ordering in a GOMS 
method means something quite different from step-
ordering in a CPM-GOMS method.  In the former 
case, if step B follows step A, then all subgoals and 
operators descending from step A must be completed 
before B or any of its descendants can begin.  This 
kind of ordering can be accomplished by making the 
completion of step A an enabling precondition for step 
B using the waitfor construct (see example Figure 1).  
For CPM-GOMS, this approach is too restrictive.  
Operators descending hierarchically from one step 
must be free to execute before those from a prior step 
have completed, subject to the constraints described 
earlier.  The necessary effect is achieved using the 
rank clause.  Whereas waitfor is a control construct in 
the programming language sense (like a loop or 
conditional-branch) and specifies order of execution, 
rank is a declaration (advisory construct) that 
attributes a property – rank value – to a given goal.  If 
rank is specified for the steps of every method, then 
any two primitive operators arising from different 
templates can be compared to see which has the 
superior rank value and, thus, which has precedence in 
case of a resource conflict.   
  (procedure 
     (index (perform withdraw transaction ?amt)) 
     (step s1 (fast-move-click withdraw-button) (rank 1)) 
     (step s2 (fast-move-click checking-button) (rank 2)) 
     (step s3 (enter-number-sequence ?amt) (rank 3)) 
     (step s4 (slow-move-click money-slot) (rank 4)) 
     (step ctl1 (terminate) (waitfor ?s1 ?s2 ?s3 ?s4))) 

   (a) 
  (procedure 
     (index (fast-move-click ?target)) 
     (step c1 (initiate-move-cursor ?target)) 
     (step hvr1 (hold-resource r-hand-block) (waitfor ?c1))   
     (step m1 (move-cursor ?target) (waitfor ?c1)) 
     (step c2 (attend-target ?target)) 
     (step hvr2 (hold-resource vision-block) (waitfor ?c2)) 
     (step c3 (initiate-eye-movement ?target) (waitfor ?c2)) 
     (step m2 (move-eye ?target) (waitfor ?c3)) 
     (step p1 (perceive-complex-obj ?target) (waitfor ?m2)) 
     (step rvr2 (release-resource vision-block) (waitfor ?p1))  
     (step c4 (verify-target-pos ?target) (waitfor ?c3 ?p1)) 
     (step c5 (initiate-click ?target) (waitfor ?c4 ?m1)) 
     (step m3 (mouse-down ?target) (waitfor ?m1 ?c5)) 
     (step m4 (mouse-up ?target) (waitfor ?m3)) 
     (step rvr1 (release-resource r-hand-block) (waitfor ?m4)) 
     (step ctl1 (terminate) (waitfor ?m4 ?rvr1 ?rvr2))) 

   (b) 
  (procedure 
     (index (mouse-up)) 
     (profile right-hand) 
     (step s1 (start-activity right-hand release-mouse-button  
                     :object mouse-device :duration 100 => ?a) 
     (step ctl1 (terminate) (waitfor (completed ?a))) 
     (step ctl2 (reset ?self) (waitfor (resumed ?self)))) 

   (c) 

Figure 2:  (a) method  (b)  template and (c) operator 



Apex can use precedence information to infer control 
(operator sequencing) decisions that comply with the 
unary resource and slack exclusion constraints.  For 
example, the method represented in Figure 2a 
generates goals for moving the mouse to and clicking 
on the “withdraw” and “checking” buttons.  These 
goals will be decomposed using the template in 2b, 
creating numerous operator-level goals including 
(initiate-move-cursor withdraw-button) and (initiate-
move-cursor checking button). 

As these both require use of the “cognition” 
resource, a unary resource constraint applies – the 
goals cannot be executed at the same time.  Neither 
the method or template representation explicitly orders 
these steps.  Instead, Apex automatically detects the 
conflict and determines that a precedence relationship 
exists between the goals, with (initiate-move-cursor 
withdraw-button) having precedence.  On this basis, 
the architecture executes this goal first and thereby 
satisfies the constraint. 

Representing Templates 
A CPM-GOMS template specifies a set of operators, 
each representing a discrete cognitive, perceptual or 
motor activity, and a set of constraints on the 
execution of operators.  Constructing templates 
involves consideration of the logical requirements of 
the task (e.g. moving a mouse to a target location must 
involve steps for finding the target), general principles 
of human cognitive behavior (e.g. reading a word 
requires visual attention (McCann, Folk, & Johnston, 
1992)), and, in some cases, template-specific 
parameters (e.g. Fitt’s Law constants for mouse 
movement).  Template construction is also guided by 
theory which places additional constraints.  For 
example, CPM-GOMS incorporates the Model Human 
Processor constraint that motor actions are preceded 
by cognitive initiate operator to prepare the action 
(John 1996). 

Figure 2b illustrates how templates are represented 
in Apex.  Every cognitive, perceptual and motor 
activity (operator-level action) is represented in a step 
clause.  Logical constraints are represented using the 
waitfor clause.  For example, the cognitive action to 
initiate motor behavior represented in step c1 is 
considered a prerequisite for performing the motor 
behavior (m1).  Thus, the latter step is explicitly 
constrained to wait for the former to complete.  Unary 
resource constraints between operators within a 
template – i.e. where two operators from the template 
use the same resource –  are also represented using the 
waitfor clause.  Note that the rank-based mechanism 
described previously cannot enforce resource 
constraints since all operators from a template will 
have equal precedence. 

Slack exclusion constraints are meant to prevent 
operators with certain “excluded” properties from 
executing during otherwise available slack intervals.  
The cognitive initiation exclusion rule described 

earlier requires that templates represent constraints 
that prevent an operator from executing if (a) the 
operator originates from a different template with 
lower precedence, (b) the operator represents a 
cognitive action to initiate behavior in some resource 
R, and (c) there is at least one operator in the template 
that uses R and is not yet complete (including any that 
have not yet begun). 

Representations in the template must test whether 
these conditions hold.  For property (a), it is only 
necessary that an excludable operator produces a 
resource conflict.  Apex will then automatically defer 
its execution and thereby enforce the exclusion 
constraint.  However, this will work only if operator-
level goals that use the contested resource, and thus 
produce a conflict, also have property (b).   This 
requires extending the concept of a resource to signify 
any arbitrary property of an operator.   In our model, 
cognitive operators that initiate action in resource R 
are represented by procedures defined to use a 
resource named <R>-block (e.g. “r-hand-block”, 
“vision-block”) 2.  Property (c) concerns when the 
template will prescribe use of the <R>-block resource, 
making a conflict possible.  In particular, the temporal 
scope of potential conflicts is an interval running from 
the first cognitive initiation act for resource R in the 
template to the last operator in the template that uses 
R.  Because this interval is less than the lifetime of the 
template-level goal, it cannot be specified by a profile 
clause in the template.  Instead, the hold-resource and 
release-resource commands are used (see 2b) to 
precisely bound the interval. 

Representing Operators 
Operators are the most primitive, fine-grained level of 
behavior in a task representation.  To represent a 
CPM-GOMS operator in Apex, three issues must be 
considered: resource requirements, duration and 
interruption handling.  Every operator in a CPM-
GOMS model represents a discrete cognitive, 
perceptual or motor activity.  Each is thus a user of a 
single cognitive, perceptual or motor resource notated 
in a profile clause in the operator’s definition.  In 
some cases, an operator will have a property making it 
eligible for exclusion under an exclusion constraint.  If 
so, an additional resource (e.g. vision-block) will be 
listed in the operator’s profile clause to represent the 
property that makes it excludable. 

An operator’s duration contributes to the predicted 
total time required for a high-level goal and also 
determines whether the operator can fit into a given 
interval of slack time.  In Apex, duration is 

                                                 
2 What  “block” resources correspond to in psychological 
terms is still undetermined.  One possibility is that each 
represents limited cognitive capacity to manage behavior in 
some other resource.  Another possibility is that each such 
resource represents a  learned inhibition against interleaving 
similar behaviors from different goals. 



represented as a parameter of a start-activity step in 
the operator representation (see Figure 2c).  Executing 
this step is what causes the operator to occupy a 
specified resource for a block of (simulated) time.  
When the prescribed interval has passed, an event of 
the form (complete <activity>) is generated to indicate 
that the operator is complete.   

As described earlier, the unary resource constraint 
requires that operators not be executed in a given 
interval of slack time if the size of that interval is less 
than the operator’s duration.  Apex meets this 
constraint, not by preventing the operator from 
executing in that interval, but by aborting its execution 
when the window of slack time closes.  Specifically, 
an operator will begin execution as soon as its waitfor 
preconditions (if any) are satisfied and it becomes the 
highest priority competitor for the resource(s) it needs.  
If an operator with conflicting resource requirements 
and higher priority (i.e. from a template-level goal 
with higher precedence) becomes enabled while it is 
executing, Apex interrupts the executing operator and 
reallocates resources to the new one3.  By default, 
Apex resumes an interrupted goal where it left off 
once the goal again becomes the highest priority 
competitor.  However, the correct behavior in this case 
is not to resume but to reset  (start over).  To override 
the default, a reset step (see Figure 2c) is included in 
the representation of each operator. 

Discussion 
We have provided a detailed description of the 
requirements for automating CPM-GOMS and shown 
how Apex implements these requirements.   The use 
of Apex to automate CPM-GOMS analyses allows 
user-interface designers and engineers to simulate 
human performance on HCI tasks with little effort and 
minimal expertise in cognitive modeling or  
psychology.   For example, in a recent class at 
Carnegie Mellon University, all students, none of 
whom were psychology students, were able to go from 
simple keystroke-level models they had built in Apex 
to correct CPM-GOMS models in less than half an 
hour.  In previous classes and CHI tutorials, the 
process took six times as long and often resulted in 
incorrect models.  These experiences raise hopes that 
Apex will allow UI designers and engineers to  easily 
evaluate human performance on any given interface 
using a powerful modeling method previously 
inaccessible to all but expert cognitive modelers. 
 
 

                                                 
3 Enforcing unary resource constraints by interrupting and 
restarting operators is inefficient for “ballistic” tasks where 
all operators needed for the high-level goal can be specified 
at the outset.  It is appropriate for “reactive” tasks where 
new goals and operators may arise in response to unknown 
or unexpected features of the environment.  
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