

Safe Routing of Multiple Aircraft Flows in the

Presence of Time-Varying Weather Data

Joseph Prete and Joseph S. B. Mitchell

Stony Brook University

Stony Brook, NY 11794

Abstract

The expected growth of air traffic over the course of the twenty-first century strongly

suggests a need for new approaches to air traffic management that are more flexible in

the face of both traffic volume and weather. One approach to increasing the capacity of

the national airspace is to improve the ability of existing routes to be adjusted in the

presence of hazardous weather. In this paper, we describe the algorithms that make up a

system we have implemented, the Flow-Based Route Planner (FBRP), to compute

multiple flows of aircraft to be routed across a specified region of airspace, e.g., a sector

or the transitional airspace in the vicinity of an airport. The FBRP allows for a variety of

constraints on the computed routes that permit a user to approximate the desired behavior

of real aircraft, including avoidance of changing hazardous weather patterns, turn and

curvature constraints, and the horizontal separation standard. The algorithm searches for

optimal routes satisfying the constraints using a search within a discrete network that

models the geometry of the airspace. The novelty of the system is its ability to handle a

variety of constraints and to efficiently route multiple flows of aircraft in dynamic

weather scenarios.

 We describe here some of the algorithmic details of the FBRP system and report

on initial experimentation with the system. In a companion paper [KPPM], the FBRP is

used to conduct a suite of experiments and a comparison of methods for synthesizing

weather-avoidance routes in the transition airspace.

AIAA Guidance, Navigation, and Control Conference and Exhibit
16 - 19 August 2004, Providence, Rhode Island

AIAA 2004-4791

Copyright © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

 2

1 Introduction

1.1 Overview
 It is expected that in the near future the demands on the national airspace will

continue to increase as they have in the past. Current methods of air traffic control are

insufficient to handle this demand in the face of hazardous weather and other constraints.

In order to improve the capacity of the national airspace, it is desirable to find new ways

to route aircraft safely around hazardous weather.

 The FBRP calculates arrival and departure routes for given airports, given a

weather forecast specified by a sequence of time slices of weather. The routes are

defined in such a way that any aircraft that arrive or depart during a particular time

window will follow a specified set of paths that are valid during that time window only.

Each route, specified with a time window of validity, is referred to as a flow. The routes

are dynamic – each specified time window has its own set of routes. The weather is also

dynamic – the algorithm routes aircraft in such a way that the aircraft will avoid predicted

weather that will occur in the course of its flight.

The computed routes obey several important constraints: they avoid approaching

within some specified distance of hazardous weather; they obey a horizontal separation

standard with respect to aircraft on other routes (flows); they maintain a heading within

some specified range of allowed headings; and they have low complexity (defined as the

number of waypoints on the route). Within the specified constraints, the routes are

computed to be optimal with respect to distance among all paths that lie on the search

network.

 Each route is computed in two phases. First, we calculate an optimal route from

start to goal (e.g., in the transition airspace, from a point on the 200 nm range ring to a

metering fix), using a shortest-path algorithm on a densely connected search grid.

Second, we simplify the computed route by calculating the route of least complexity that

is sufficiently near the original route.

 Only those links within the search network that obey the constraints are

considered to be usable. Feasibility of a link requires checking it against the weather

forecast data as well as against other flow routes that have already been specified, in

order to ensure weather separation standards and lateral separation standards.

 While this paper focuses on applications to transition airspace routing, our

algorithms and techniques are easily applied to en-route airspace routing problems.

1.2 Related Work
There is a large literature on optimal route computation, particularly in the field of

computational geometry. See the survey articles ([Mi1,Mi2]) for extensive background

on computing optimal routes in geometric data. In the context of air traffic management,

the computation of optimal routes has also been studied extensively (see, e.g.,

[DW,KLM,KWH] for weather avoidance optimal routes and [JB] for wind-optimized

routes). Related to our approach, [CKLM] studied multiple path routing in space-time in

performing conflict resolution.

 3

Closely related to the research reported here is the companion paper [KPPM], in

which the FBRP and related approaches are compared experimentally in transition

airspace experiments.

2 Model of the Algorithmic Problem

 Each desired route is specified with a starting waypoint, U, and a destination

waypoint, V. U represents the point on or near the 200 nm range ring at which a flow of

aircraft is to enter the airspace, and V represents the metering fix to which these aircraft

are to be routed. We are given a specification of the 200 nm radius circle centered at an

airport, and start and end times, Ts and Te, respectively. In addition, there is a specified

time increment, Ti, and a speed, S, applied to all aircraft. More generally, a speed profile

may be specified; however, this option is not yet fully implemented.

 Our problem is described as follows. Consider the time from Ts to Te to be

partitioned into a number of time windows Wi, each of duration Ti. For each time

window and for each pair of starting and destination waypoints, (U,V), our goal is to

calculate a legal path from U to V for the set of aircraft that arrive at U during that time

window. All aircraft that arrive at time t (where Ts ≤ t ≤ Te) will start at waypoint U and

travel along the path at speed S until they reach the goal waypoint V. Thus, the path at

any given time is not just a point but is a subpath of length equal Ti · S, and the path at

any given point extends over a time window of duration Ti. Each path is to be computed

so that it is as short as possible – or so that it can minimize some more complex objective

function - subject to many constraints:

• The path avoids hazardous weather by a distance of at least a specified safety

margin, w. The weather intensity threshold (above which weather is considered

hazardous, and is to be avoided completely) is user-specified.

• The path maintains the specified horizontal separation standard with respect to all

other flow routes already determined.

• The path contains no more than k waypoints.

• The path contains no segments of length less than L.

• The path is only permitted to travel in a specified range of headings, defined

relative to both the vector from the current position to the goal, V, and the vector

from the start, U, to the goal, V.

All routes that are going towards the same metering fix at the airport are

considered a single fan-in. For purposes of simulation, each route is treated as having a

goal at a short distance from the fan-in. The aircraft are assumed to be metered so as to

produce the desired arrival rate for that metering fix.

 4

For each time window do {

 For each of N random orderings of the routes to be solved do {

 For each route, in order, do {

 Search for a legal route R1 from U to V of minimum length

 Generate waypoints at each node of R

 Search for a nearby route R2 minimizing the number of waypoints

 Report the path R2 if it uses at most k waypoints; otherwise,

 continue searching

 }

 Compare route set S to SO, the optimal set found so far

 If S has more successful routings than SO, then S → SO

 }

 Keep set SO

}

Figure 1. Pseudocode illustrating the solution process.

3 Outline of the Algorithm

 In order to solve a routing problem, we first break the problem up into individual

routes to be found, each of which has a start waypoint, a goal waypoint, and a desired

window of validity. We can then solve the routes in the order of their start times. Since

several routes exist for each window, we pick several random orders and choose the best.

 Routes are planned in two major steps. First, we approximate a shortest path

between the source and the destination by searching for a route that uses the points of a

grid. Second, we refine this route by searching for another, simpler route, using only

points that are close to the original route.

3.1 Phase 1: The Initial Search for a Path
 Here we find an initial approximation to a shortest-path between the start

waypoint, U, and the goal waypoint, V. The path must satisfy all of the specified

constraints: avoiding hazardous weather by at least the safety clearance w, maintaining

the horizontal separation standard with respect to already established flow routes,

obeying the turn and orientation constraints, and so on.

3.1.1 The Search Technique

 We reduce the problem of searching for legal shortest-paths for aircraft to that of

searching a graph for a shortest-path. For purposes of searching this graph, an A* search

is used [Ni]. The A* search has significant advantages over other graph search

techniques (e.g., Dijkstra’s algorithm), especially in situations, such as ours, in which an

effective lower bound on the remaining path length is easily determined. The search is

guaranteed to terminate with an optimal path (just as breadth-first methods, such as

Dijkstra’s algorithm), but the search is goal-directed, exploring the most promising

extensions to the path first. In theory, A* may explore just as many nodes of the search

network as Dijkstra’s algorithm, but in practice, the A* search is often substantially more

efficient.

 5

Figure 2. Connections from a central point to its neighbors, for connectivity constants K=1, 2, 3, 4.

Higher values of K produce a larger number of edges linking the point to its neighbors at a wider

variety of orientations. This has the benefit of improving the approximation of the Euclidean metric,

at the cost of increasing the search complexity, as the network size increases.

3.1.2 The Search Space

 The algorithm searches for shortest paths in a network that is based on an

enhanced-connectivity rectilinear grid. The grid can be any size, strictly speaking, but

the fineness of the grid must be balanced against both the quality of the solution and the

running time. In practice, our grid points are usually spaced roughly 6.25 nautical miles

apart. Thus, for the 400 by 400 nautical mile area of interest around an airport, there are

roughly 64 by 64 = 4096 grid points. (Tradeoffs of large and small grid sizes are

discussed in section 5.)

 The points of the grid become the vertices of a graph and are interconnected in

specific ways, with the connections forming the edges of the search network, which

represent the candidate flight legs. A common choice in grid-based path searching is to

use a simple connection pattern with each grid point connected to each of its four or eight

neighbors. This does not work well in our application because the resulting paths may

have artifacts resulting from the relatively crude discretization of orientations of flight

legs. A crude angular discretization leads to a poor estimation of Euclidean distance,

leading to poor approximations of shortest paths. The difference is important because the

quality of phase-1 paths directly impacts the quality of the final solutions.

 We use an interconnectivity defined as follows. There is some interconnectivity

constant K. For each grid point P, consider the set N(P) of all points that are within K

units of P along each axis – this results in a square group of grid points, 2K + 1 units on a

side, centered on P. We connect P to each of the grid points of the neighborhood N(P),

but connect P to only one of the grid points in any particular direction from P, namely,

the closest one in that direction. For example, if P=(i,j), and K=3, we connect P to

(i+1,j+1), but not to (i+2,j+2) or (i+3,j+3), since these points are collinear with the

connection to (i+1,j+1), in the direction at 45 degrees with respect to the x-axis. The

edges of the network are not directly stored; instead a table of grid connections is used.

3.1.3 The Paths

 As the search proceeds through the graph, each node that is reached by a path of

valid edges (connections in the network that do not violate any of the constraints) is

labeled with a time (or cost) value. This value indicates the minimum time (or cost)

required by a path from the starting waypoint to this node, along a path of valid edges.

The same position with different time values is the same node; thus, at no time are we

 6

ever searching a three-dimensional space of nodes in space-time. When a shortest-path

has been found from the start waypoint to the goal waypoint, every node on that path has

been labeled with the time at which an aircraft can first reach it.

3.1.4 Hazardous Weather

 Hazardous weather is represented as a series of grids of reflectivity measurements

or predictions. The weather data grid is independent of the search space grid and is

usually at a different resolution.

 Each grid point of weather data represents the measured or predicted weather,

within the area of interest, at one particular point in time. Thus, the entirety of the

weather is represented as a series of such grids scattered evenly across the time of

interest. For future reference, we will refer to these times as Ti.

 It is possible to interpolate between weather samples to produce a continuous

representation of weather, but this is a computationally costly process and requires

somewhat arbitrary assumptions about how to interpolate between time slices. We have

instead taken the conservative position that the weather sample from time Ti is valid from

the earliest possible time to the latest; thus, it is valid, with above-threshold hazardous

weather being impenetrable, from Ti-1 to Ti+1, and this is the valid time window of the

weather. If the weather data is the first or the last over the time horizon of the

experiment, then its time window has no limit in the appropriate direction.

Under this interpretation, determining conflicts requires determining what part of

a given segment of a path is relevant to the time window of a weather sample, and then

checking the path against the weather sample to determine if the path is legal.

3.1.5 Other Paths

 As described above, each resulting path extends over both space and time. The

shape of this path, shown three-dimensionally, is a strip of connected quadrilaterals that

cross from the start waypoint to the goal waypoint while moving upwards (i.e. forward in

Figure 3. Weather is represented as a series of samples in time

using sampled data (historic or predictive) from the National Weather Service.

 7

Figure 4. The red parallelogram is the region of space-time that corresponds to a flight leg for an

aircraft along a flow, where the “height” of the parallelogram indicates the time interval for the flow,

and its slope indicates the speed of the aircraft. The transparent blue polyhedron is the region that

must be kept clear of hazardous weather and other aircraft (or more precisely, other aircraft’s

protected airspace). This illustration is only for one leg of a path; the entire path is represented by a

chain of such polyhedra.

time). In order to maintain the horizontal separation standard, each path can instead be

treated as if it were an extruded cylinder, of radius equal to the required separation.

 In order to exploit the efficiency provided by our data structures, we do not make

an exact computation to determine if two paths conflict with one another. Instead, the

extruded-cylinder shape is (conservatively) approximated by a bounding polytope. (See

Figure 4.) These extruded cylinders become the input to a polygon collision detection

algorithm based on bounding-volume hierarchies of k-dops. (See [KHMSZ] for a

thorough treatment of k-dops, which are generalizations of axis-aligned bounding boxes

to convex polytopes having k discrete orientation facets.).

 A generalized bounding-volume hierarchy would not be sufficiently fast, so

domain-specific timing information has also been used to eliminate virtually all prior

routes from consideration; this can be done because a great deal is known about the exact

shape that a route must take in space-time.

3.1.6 Angle Constraints

 Turn angle constraints can be handled by augmenting the graph search network to

take into account heading information, as was done in [KLM]. This option is currently

being added to the FBRP system, but the results we report here are based on instead using

another form of angle constraint: Each flight leg is required to stay within a specified

 8

angle of the vector from the source to the destination. Specifically, if the source of a path

is point U, and the destination of that path is point V, the user can specify a parameter, Θ,

that indicates the maximum angle that any flight leg (edge along the path) can make with

respect to the line UV. This constraint captures several important good qualities of paths

that are difficult to quantify. It also greatly restricts the area that will be searched, which

is useful for reducing running time.

3.2 Phase 2: Path Refinement
 The output of Phase 1 of the algorithm is a path P. Typically, P is of far higher

complexity (i.e., having far too many waypoints) than is useful or practical in ATC

applications. Phase 2 of the algorithm, the refinement phase, post-processes the path P

using another shortest path search, but the shortness of a Phase-2 path is defined in terms

of its complexity.

 The refinement phase performs a search for a path over the complete graph of a

specifically defined set of Steiner points (candidate waypoints) S. For each point pi in P,

we define a set S of |P|*(2M + 1) points as follows (refer to Figure 5), where |P| denotes

the number of waypoints in path P:

 1. Each point pi is in S.

 2. We place M evenly spaced points on each side of pi, within a certain user-

specified path error tolerance δ, along the angular bisector of the path P at point pi.

 While the Phase-1 search sought paths of low distance, the Phase-2 search

optimizes the number of links (flight-legs, or waypoints) in a path. This may increase the

length of the output path by a small amount, since the output path may find a simpler but

slightly longer path by using one of the additional vertices in the search space.

 In addition to the search criteria from the initial search, we add a length criterion

to the refinement phase; a link that is too short is ignored. In summary, a legal link in the

graph – and hence a legal path – has the following properties:

• avoids hazardous weather, with intensity above a user-specified threshold;

• obeys the separation standards for aircraft;

• travels within a particular arc determined by the direction to the goal point; and,

• has at least a specified minimum length, L.

 9

Figure 5. By generating new points along the angular bisectors along the path, we can search for a

path that lies near the original path, within distance δδδδ, and yet has fewer turns. The length of the

new path is very close to the length of the original path, but is less complex, having fewer waypoints.

Additional candidate edges, not shown, skip edges of the original path; one such edge is used in the

new path illustrated on the right.

 10

4 Features

Our algorithm and toolset allow for fine-grained control over many aspects of the desired

problem and the path-searching process.

• Weather margin of safety. The algorithm is completely independent of the

definition of what constitutes a conflict with hazardous weather, as long as the

definition is based on a binary rule (“go” or “no-go”). We expect in the future to

finish the implementation of more complex weather avoidance options, including

the addition of weight-based (non-binary) weather cost functions, which are easily

handled within our framework.

• Aircraft margin of safety. The algorithm will accept any number as the lateral

separation standard between aircraft. The algorithm currently requires that all

aircraft have the same safety margin parameters, which is most often the case in

current ATC systems. In principle, the algorithm can easily handle different

separation standards between, e.g., different classes of aircraft.

• The fineness of the search grid. Doubling the resolution of the search grid

increases the running time, of course, but it also improves the quality of the output

paths.

• The connectivity constant, K. Increasing the connectivity constant K increases the

number of connections from one node to another in the grid. This is another

tradeoff of quality versus running time, although there is a near-optimal value.

(See Figure 6.)

• The angle constraint. Any degree value for θ in the range [0, 90) is acceptable.

Strengthening the angle constraint may also require increasing the connectivity

constant. (See Figure 7.)

• The length constraint. Output segments can be constrained to be always above

some specified minimum length, L.

• The complexity constraint (upper bound on the number of waypoints). We have

designed an option into the algorithm that will constrain the number of waypoints

to be at most a specified maximum, k, based on the dynamic programming

(Bellman-Ford) techniques of [KLM]; however, this option is still under

implementation. The currently implemented algorithm can be used to impose a

bound on the number of waypoints by searching (Phase 2) for a minimum-

waypoint path within a specified tolerance distance of the path computed in Phase

1. (Theoretically, this method cannot guarantee it will find a k-turn path when

one exists, but in practice it is highly effective at minimizing the number of

waypoints.)

 11

Figure 6. From left to right, searches with connectivity constant 1, 3, and 5. All three searches cover

approximately the same region of airspace, but a higher connectivity search looks at a wider range of

possible angles. We have found that a connectivity constant of 3 is sufficient to produce good results,

so this is the default choice of this parameter.

Figure 7. On the left, we see the search as it is conducted with an angle constraint of θθθθ=30°. The

black and green arrows represent the segments that were examined over the course of the search; the

brightness of the segment represents when it was examined in the search (i.e., distance from the

starting waypoint). On the right, we see the same search except with an angle constraint of θθθθ=60°. A

much larger area is searched, which takes more time but also allows more paths to be found. These

search trees were generated with breadth-first searches, for clearer illustration of the angle

constraint feature; an A* search would have immediately headed for the goal, looking at nothing else.

 12

5 Results

 We have conducted numerous experiments with the FBRP system to study its

performance and results. We have also examined the results of the FBRP under various

choices of the parameters to study their effect on the algorithm. See also the companion

paper, [KPPM], for applications within the transition airspace and comparisons with

another method based on perturbing existing standard arrival/departure routes.

5.1 Studied Scenarios
 The scenarios used for testing were from three representative days of Atlanta

airspace. In broad terms, May 22, 2002 was a mostly clear-weather day, while June 26

and 27, 2002 included clear, moderate and severe weather systems. In all cases, flows

were calculated for each 30-minute interval from 12:00 to 23:30 (the last flow being valid

until just before midnight).

5.2 Studied Parameters
 We examined the effect of the following parameters on the output:

• Density of the search grid used in Phase 1 of the algorithm – 32, 48, 64, 96, 128.

These correspond to grids of resolution (grid cell size) 12.5 nmi, 8.3 nmi, 6.3 nmi,

4.2 nmi, and 3.1 nmi, respectively.

• Connectivity of the search grid – see above for a definition of the connectivity

constant, K. This varied between one and four.

• M, the number of Steiner points used (on each side) for each input point in Phase

2 of the algorithm. This varied between zero and three.

5.3 Successful Routing
 One of the primary objectives of the FBRP is to increase airspace capacity, which

in turn means that a successful FBRP should be able to route successfully a large fraction

of the requested routes, thus producing a higher capacity airspace. The companion paper

[KPPM] compares the FBRP to historical data, but it is also of direct interest to examine

what parameters result in the highest proportion of successful routings.

 Counter-intuitively, increasing the density of the Phase 1 search grid produced a

similar or lower success rate to lower-density grids, while increasing its connectivity

produced the expected increase in success rate. (This observation applies, of course, only

to the small ranges of values of grid densities used in the experiments.) Using more

Steiner points in Phase 2 refinement produced a marginal increase in routing successes,

most likely because it improved the algorithm’s ability to recover routes with the required

complexity.

 13

5.4 Low-Complexity Routing
 One of the primary purposes of the algorithm is to produce routes of low

complexity so as to insure that the routes themselves do not unnecessarily increase the

workload of air traffic controllers or pilots. It is important to study how the parameters of

the algorithm affect this aspect of the output.

The output necessarily contains a large number of trivial routes, in which a direct

connection between the start and goal waypoints can be immediately established. These

routes have been ignored when examining complexity since they provide no information

with which to compare the parameters of the algorithm.

 The experiments showed no significant effects on average complexity of

nontrivial paths for any of the parameters. Mid-sized (6.3 nmi) grids have lower average

complexity than large or small grids, but the effect is moderate. Low-connectivity grid

searches show lower average complexity than high-connectivity grid searches, but this is

most likely a result of the higher rate of routing success, which would in general produce

more of the complex routes that are missed or unsuccessful in a low-connectivity grid

search.

5.5 Running Time
 It is of particular interest to determine expected running time of the algorithm,

because of the real-time nature of air traffic control. Investigating running time as

influenced by the parameters of the algorithm produced the expected results.

 In general, increasing the grid resolution directly increases running time as the

square of the grid resolution. This was an expected result; the vast majority of time is

spent searching the grid of points, and the region that must be searched increases

proportionately to the number of nodes in the grid. Similarly, increasing the number of

Steiner points used in Phase 2 refinement produces an expected increase in running time.

Interestingly, increasing the number of Steiner points has a more pronounced effect on

running time when the grid is denser.

 The most interesting effect here is that increasing the connectivity constant

decreases running time to a point – a connectivity constant of three – and then running

time increases. This appears to be the case for almost every combination of algorithm

parameters.

 14

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

32 48 64 96 128

Grid Density

S
u

c
c

e
s

s
 R

a
te

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

1 2 3 4

Grid Connectivity

S
u

c
c

e
s

s
 R

a
te

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0 2 4 6

Refinement Waypoints

S
u

c
c

e
s

s
 R

a
te

 15

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

32 48 64 96 128

Grid Density

A
v

e
ra

g
e

 W
a

y
p

o
in

ts
 p

e
r

C
o

m
p

le
x

 P
a

th

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

1 2 3 4

Grid Connectivity

A
v

e
ra

g
e

 W
a

y
p

o
in

ts
 p

e
r

C
o

m
p

le
x

 P
a

th

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 2 4 6

Refinement Waypoints

A
v

e
ra

g
e

 W
a

y
p

o
in

ts
 p

e
r

C
o

m
p

le
x

 P
a

th

 16

0

50

100

150

200

250

32 48 64 96 128

Grid Density

R
u

n
n

in
g

 T
im

e

0

50

100

150

200

250

1 2 3 4

Grid Connectivity

R
u

n
n

in
g

 T
im

e

0

50

100

150

200

250

0 2 4 6

Refinement Waypoints

R
u

n
n

in
g

 T
im

e

 17

Figure 8. A snapshot of arrivals at Hartsfield International Airport, Atlanta. The algorithm was run

with historical weather data from June 27, 2002, from 20:00 to 24:00. The routes shown are valid

between 20:00 and 20:20. The violet circles are the locations of standard arrival metering fixes.

Each metering fix is assigned three waypoints on the range ring based on historical flight data;

the algorithm then finds paths from the range ring to the arrival fix.

In this particular case, three routes were attempted to each of the four metering fixes, but some were

blocked entirely by hazardous weather and could not be routed.

 18

Figure 9. An illustration of the effects of different grid sizes on the final results. In this case only one

route was associated with each metering fix. The three diagrams represent grid sizes, from top to

bottom, of 16, 64, and 256 grid lines across. The area of interest is 480 nmi square, so that the three

diagrams represent, from top to bottom, a cell size of 30 nmi, 7.5 nmi, and 1.875 nmi respectively.

The first solution illustrates the difficulties in a large grid size; note that the western route takes a

very large detour around hazardous weather. The second solution (with a 7.5 nmi cell size) is very

close to ideal path lengths. The third solution, with very small 1.875 nmi cells, is no better than the

second – but took much longer to compute.

These routes are valid for arrivals at Hartsfield International Airport, Atlanta, on June 27, 2002,

between 21:20 and 21:40.

 19

Figure 10. A much more difficult weather situation. These routes are valid for arrivals at Hartsfield

International Airport, Atlanta, on June 27, 2002, between 23:40 and 23:59. The algorithm attempted

solutions for 20-minute windows between 20:00 and 23:59 and was able to find at least one route for

every period attempted, despite severe and very complicated weather patterns for the duration.

 20

6 Issues and Future Work

The implemented FBRP algorithm has a few weaknesses that we will address in future

work. Ongoing efforts seek to do the following:

• Complete the implementation of the algorithm that imposes an upper bound on

the number, k, of waypoints permitted along a route.

• Enhance the algorithm to report a set of distinct (homotopically distinct) routes so

that a user can be presented with various options.

• Complete the implementation of a wider variety of cost functions that can be

applied to the routes.

• Devise better methods of searching for multiple disjoint flow routes through a set

of many constraints (weather hazards, no-fly zones, etc). We have a preliminary

implementation of a method based on computing “minimum cuts” in the airspace

and using uppermost and lowermost paths to constrain new routes that need to be

inserted, leaving enough “space” to route other flows on each side of the route.

This feature will be explored in detail in a future paper.

Acknowledgments

Dr. Jimmy Krozel and Steve Penny of Metron Aviation were important contributors to

this effort, in helping to formulate the algorithmic problems and in giving technical input

and assistance along the way. This research was funded by NASA Ames Research

Center, via a grant to Stony Brook University (J. Mitchell, PI, NAG2-1620) and via a

subcontract from Metron Aviation, with support under contract NAS2-02075. We thank

Dr. George Meyer and our NASA Technical Monitor, Dr. Matt Jardin, for technical

guidance. J. Mitchell is also partially supported by the National Science Foundation

(CCR-0098172).

References
[CKLM] Chiang, Y.-J. Klosowski, J.T., Lee, C., and Mitchell, J.S.B., “Geometric

Algorithms for Conflict Detection/Resolution in Air Traffic Management”, 36th IEEE

Conf. on Decision and Control, San Diego, CA, Dec., 1997.

[DW] Dixon, M. and Weiner, G, “Automated Aircraft Routing Through Weather-

Impacted Airspace”, Fifth International Conference on Aviation Weather Systems,

Vienna, VA, 1993, pp. 295-298.

[FAA] Federal Aviation Administration, “1997 Aviation Capacity Enhancement Plan”,

Federal Aviation Administration Office of System Capacity, Washington, DC, 1997.

[JB] Jardin, M.R., and Bryson, A.E., “Neighboring Optimal Aircraft Guidance in Winds”,

Journal of Guidance, Control, and Dynamics, Vol. 24, No. 4, pp. 710 – 715, July-Aug.,

2001.

[KHMSZ] Klosowski, J., Held, M., Mitchell, J.S.B., Sowizral, H., and Zikan, K.,

“Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs,” IEEE

Transactions on Visualization and Computer Graphics, Vol. 4, No. 1, 1998, pp. 21-36.

[KLM] Krozel, J., Lee, C., and Mitchell, J.S.B., “Estimating Time of Arrival in Heavy

Weather Conditions,” AIAA Guidance, Navigation, and Control Conf., Portland, OR,

Aug., 1999.

 21

[KPPM] Krozel, J., Penny, S., Prete, J., and Mitchell, J.S.B., “Comparison of

Algorithms for Synthesizing Weather Avoidance Routes in Transition Airspace,” AIAA

Guidance, Navigation, and Control Conf., Providence, RI, Aug., 2004.

[KWH] Krozel, J., Weidner, T., and Hunter, G., “Terminal Area Guidance

Incorporating Heavy Weather,” AIAA Paper 97-3541, Aug., 1997.

[LMS] Lanthier, M., Maheshwari, A., and Sack, J.-R., “Approximating Weighted

Shortest Paths on Polyhedral Surfaces”, Proceedings of the 13th Annual ACM

Symposium on Computational Geometry, Nice, France, 1997, pp. 274-283.

[MM] Mata, C., and Mitchell, J. S. B., “A new algorithm for computing shortest paths

in weighted planar subdivisions,” Proceedings of the 13th Annual ACM Symposium on

Computational Geometry, Nice, France, 1997, pp. 264-273.

[Mi1] Mitchell, J.S.B., “Shortest Paths and Networks,” Chapter 24 (pp. 445-466) in the

CRC Handbook of Discrete and Computational Geometry, CRC Press LLC, (Jacob E.

Goodman and Joseph O’Rourke, eds.), 1997.

[Mi2] Mitchell, J.S.B., “Geometric Shortest Paths and Network Optimization,” Chapter

15 (pp. 633-701) in the Handbook of Computational Geometry, Elsevier Science (J. Sack

and J. Urrutia, eds.), 2000.

[MP] Mitchell, J.S.B., and Papadimitriou, C.H., “The Weighted Region Problem:

Finding Shortest Paths Through a Weighted Planar Subdivision”, Journal of the ACM,

Vol. 38: pp. 18-73, 1991.

[Ni] Nilsson, N.J., Principles of Artificial Intelligence, Tioga Pub. Co., Palo Alto, CA,

1980.

